Variabel autoregressive-moving-average-with-exogenous

Variabel autoregressive-moving-average-with-exogenous

Forex-trading-in-india-is-legal (2)
Terbukti-forex-trading-strategy
Free-forex-trading-course-singapore-time


Testing-forex-trading-systems Akun-opsi-broker-dengan-demo-accounts terbaik Tenis-perdagangan-liga-sistem-2 0 Sell-stock-options-before-2013 Umpan balik megadroid-Forex Grafik harian Forex lemari new york

Model ARIMA dengan regresor Model ARIMA dapat dianggap sebagai tipe model regresi khusus - dimana variabel dependen telah diposisikan dan variabel independen semuanya tertinggal dari variabel dependen dan atau lag dari kesalahan - sehingga mudah terjadi pada Prinsip untuk memperpanjang model ARIMA untuk memasukkan informasi yang diberikan oleh indikator utama dan variabel eksogen lainnya: Anda cukup menambahkan satu atau lebih regresor ke persamaan peramalan. Sebagai alternatif, Anda bisa memikirkan model ARIMAregression hibrida sebagai model regresi yang mencakup koreksi kesalahan autokorelasi. Jika Anda telah memasang model regresi berganda dan temukan bahwa plot ACF dan PACF residualnya menampilkan kuototipeotomatis autoregresif atau moving-average yang dapat diidentifikasi (misalnya beberapa pola autokorelasi dan autokorelasi parsial yang signifikan pada beberapa lag pertama dan atau lag musiman), maka Anda mungkin Ingin mempertimbangkan untuk menambahkan istilah ARIMA (tertinggal dari variabel dependen dan atau kesalahannya) ke model regresi untuk menghilangkan autokorelasi dan selanjutnya mengurangi kesalahan kuadrat rata-rata. Untuk melakukan ini, Anda hanya akan menyesuaikan model regresi sebagai model ARIMA dengan regresor, dan Anda akan menentukan istilah AR andor MA yang tepat agar sesuai dengan pola autokorelasi yang Anda amati pada residu asli. Sebagian besar perangkat lunak peramalan high-end menawarkan satu atau lebih opsi untuk menggabungkan fitur model ARIMA dan regresi berganda. Dalam prosedur Peramalan Statgrafik, Anda dapat melakukan ini dengan menentukan quotARIMAquot sebagai tipe model dan kemudian menekan tombol quotRegressionquot untuk menambahkan regresor. (Sayangnya, Anda hanya terbatas pada 5 regresor tambahan). Bila Anda menambahkan regresor ke model ARIMA di Statigrafi, secara harfiah hanya menambahkan regresor ke sisi kanan persamaan peramalan ARIMA. Untuk menggunakan kasus sederhana, anggap Anda pertama kali memakai model ARIMA (1,0,1) tanpa regresor. Kemudian persamaan peramalan yang dipasang oleh Statgrafik adalah: yang dapat ditulis ulang sebagai: (Catatan: ini adalah bentuk matematika standar yang sering digunakan untuk model ARIMA. Semua persyaratan yang melibatkan variabel dependen - yaitu semua persyaratan dan perbedaan AR - adalah Dikumpulkan di sisi kiri persamaan, sementara semua istilah yang melibatkan erroh - yaitu istilah MA - dikumpulkan di sisi kanan.) Sekarang, jika Anda menambahkan regresor X ke model peramalan, Persamaan yang dipasang oleh Statgrafik adalah: Dengan demikian, bagian AR dari model (dan juga transformasi differencing, jika ada) diterapkan pada variabel X dengan cara yang persis sama seperti pada variabel Y sebelum X dikalikan dengan regresi. koefisien. Ini secara efektif berarti model ARIMA (1,0,1) dipasang pada kesalahan regresi Y pada X (yaitu seri quotY minus beta Xquot). Bagaimana Anda bisa tahu apakah akan membantu menambahkan regresor ke model ARIMA Salah satu pendekatannya adalah menyelamatkan RESIDUAL model ARIMA dan kemudian melihat korelasi silang mereka dengan variabel penjelas potensial lainnya. Sebagai contoh, ingatlah bahwa sebelumnya kami telah memasukkan model model regresi ke penjualan mobil musiman yang disesuaikan, di mana variabel LEADIND (indeks dari sebelas indikator ekonomi utama) ternyata sedikit signifikan selain lag dari variabel penjualan stationarized. Mungkin LEADIND juga akan sangat membantu sebagai regresor dalam model ARIMA musiman yang kemudian disesuaikan dengan penjualan mobil. Untuk menguji hipotesis ini, RESIDUALS dari model ARIMA (0,1,1) x (0,1,1) yang dipasang pada AUTOSALE telah disimpan. Korelasi silang mereka dengan DIFF (LOG (LEADIND)), yang diplot dalam prosedur Metode Deskriptif, adalah sebagai berikut: (Beberapa poin teknis kecil yang perlu diperhatikan di sini: kami telah mencatat dan membebani LEADIND untuk membuat stationografi karena RESIDUAL ARIMA Model juga dicatat dan dibedakan - yaitu dinyatakan dalam satuan persentase perubahan. Juga, prosedur Metode Deskriptif, seperti prosedur Peramalan, tidak menyukai variabel yang dimulai dengan terlalu banyak nilai yang hilang. Di sini nilai yang hilang pada awal RESIDUALS Variabel digantikan oleh nol - diketik dengan tangan - sebelum menjalankan prosedur Metode Deskriptif. Sebenarnya, prosedur Peramalan seharusnya secara otomatis menggambar plot korelasi silang dari residual versus variabel lainnya, namun grafik yang diberi label quotResidual Cross- Korelasi Plotquot hanya menunjukkan korelasi silang dari variabel input versus variabel lainnya.) Kami melihat bahwa korelasi silang yang paling signifikan adalah pada lag 0, namun un Untungnya kita tidak bisa menggunakannya untuk peramalan satu bulan ke depan. Sebagai gantinya, kita harus mencoba untuk mengeksploitasi korelasi silang yang lebih kecil dengan lags 1 dan atau 2. Sebagai uji cepat apakah kelambatan DIFF (LOG (LEADIND)) cenderung menambahkan model ARIMA kepada kita, kita dapat menggunakan prosedur Regresi Berganda Untuk regress RESIDUALS pada lags dari DIFF (LOG (LEADIND)). Berikut adalah hasil regresi RESIDUAL pada LAG (DIFF (LOG (LEADIND)), 1): Nilai R-squared hanya 3,66 menunjukkan bahwa tidak banyak perbaikan yang mungkin terjadi. (Jika dua lag DIFF (LOG (LEADIND)) digunakan, R-squared hanya meningkat menjadi 4,06). Jika kita kembali ke prosedur ARIMA dan menambahkan LAG (DIFF (LOG (LEADIND)), 1) sebagai regresor, Kita mendapatkan hasil yang sesuai dengan model berikut: (Titik teknis kecil di sini: kita menyimpan nilai LAG (DIFF (LOG (LEADIND)), 1) di kolom baru, mengisi dua nilai yang hilang di awal dengan angka nol, dan Diberi nama kolom baru LGDFLGLEAD.) Kami melihat bahwa ketika koefisien untuk lag DIFF (LOG (LEADIND)) diperkirakan bersamaan dengan parameter model lainnya, model ini bahkan kurang signifikan daripada model regresi untuk RESIDUAL. Perbaikan pada kesalahan akar-mean-squared terlalu kecil untuk diperhatikan. Hasil negatif yang kami dapatkan di sini tidak boleh dianggap menyarankan bahwa regresor tidak akan pernah membantu model ARIMA atau model rangkaian waktu lainnya. Misalnya, variabel yang mengukur tingkat iklan atau harga atau kejadian promosi seringkali membantu dalam meningkatkan model ARIMA (dan model pemulusan eksponensial) untuk meramalkan penjualan pada tingkat perusahaan atau produk. Ingat bahwa variabel yang dianalisis di sini - penjualan nasional di dealer otomotif - adalah rangkaian waktu makro ekonomi yang sangat agregat. Kami telah belajar sekarang bahwa dampak pada variabel makroekonomi peristiwa yang terjadi pada periode sebelumnya (misalnya perubahan dalam berbagai faktor ekonomi yang membentuk indeks indikator utama) seringkali paling jelas terwakili dalam sejarah sebelumnya dari variabel itu sendiri. Oleh karena itu, nilai tertinggal dari rangkaian waktu makroekonomi lainnya mungkin hanya sedikit untuk ditambahkan ke model peramalan yang telah sepenuhnya mengeksploitasi sejarah rangkaian waktu asli. Indikator ekonomi utama seringkali lebih bermanfaat bila diterapkan sebagaimana mestinya - yaitu sebagai indikator titik balik dalam siklus bisnis yang mungkin berpengaruh pada arah proyeksi tren jangka panjang. Pengenalan ARIMA: model nonseasonal ARIMA (p, d , Q) persamaan peramalan: Model ARIMA adalah, secara teori, kelas model paling umum untuk meramalkan deret waktu yang dapat dibuat dengan cara membedakan (jika perlu), mungkin bersamaan dengan transformasi nonlinier seperti pembalakan atau pengurasan ( jika diperlukan). Variabel acak yang merupakan deret waktu bersifat stasioner jika sifat statistiknya konstan sepanjang waktu. Seri stasioner tidak memiliki tren, variasinya berkisar rata-rata memiliki amplitudo konstan, dan bergoyang secara konsisten. Yaitu pola waktu acak jangka pendeknya selalu terlihat sama dalam arti statistik. Kondisi terakhir ini berarti autokorelasinya (korelasi dengan penyimpangannya sendiri dari mean) tetap konstan dari waktu ke waktu, atau ekuivalen, bahwa spektrum kekuatannya tetap konstan seiring berjalannya waktu. Variabel acak dari bentuk ini dapat dilihat (seperti biasa) sebagai kombinasi antara sinyal dan noise, dan sinyal (jika ada) dapat menjadi pola pengembalian cepat atau lambat, atau osilasi sinusoidal, atau alternasi cepat pada tanda , Dan itu juga bisa memiliki komponen musiman. Model ARIMA dapat dilihat sebagai model 8220filter8221 yang mencoba memisahkan sinyal dari noise, dan sinyal tersebut kemudian diekstrapolasikan ke masa depan untuk mendapatkan perkiraan. Persamaan peramalan ARIMA untuk rangkaian waktu stasioner adalah persamaan linier (yaitu regresi-tipe) dimana prediktor terdiri dari kelambatan variabel dependen dan atau lag dari kesalahan perkiraan. Yaitu: Prediksi nilai Y adalah konstanta dan atau jumlah tertimbang dari satu atau lebih nilai Y dan satu angka tertimbang dari satu atau lebih nilai kesalahan terkini. Jika prediktor hanya terdiri dari nilai Y yang tertinggal, itu adalah model autoregresif murni (8220 self-regressed8221), yang hanyalah kasus khusus dari model regresi dan yang dapat dilengkapi dengan perangkat lunak regresi standar. Sebagai contoh, model autoregresif orde pertama (8220AR (1) 8221) untuk Y adalah model regresi sederhana dimana variabel independennya hanya Y yang tertinggal satu periode (LAG (Y, 1) dalam Statgrafik atau YLAG1 dalam RegresIt). Jika beberapa prediktor tertinggal dari kesalahan, model ARIMA TIDAK merupakan model regresi linier, karena tidak ada cara untuk menentukan error8221 8220last periodier178 sebagai variabel independen: kesalahan harus dihitung berdasarkan periode-ke-periode Saat model dipasang pada data. Dari sudut pandang teknis, masalah dengan menggunakan kesalahan tertinggal sebagai prediktor adalah bahwa prediksi model8217 bukanlah fungsi linear dari koefisien. Meskipun mereka adalah fungsi linier dari data masa lalu. Jadi, koefisien pada model ARIMA yang mencakup kesalahan tertinggal harus diestimasi dengan metode optimasi nonlinier (8220 climb-climbing8221) daripada hanya dengan memecahkan sistem persamaan. Akronim ARIMA adalah singkatan Auto-Regressive Integrated Moving Average. Lags dari rangkaian stasioner dalam persamaan peramalan disebut istilah quotautoregressivequot, kelambatan kesalahan perkiraan disebut istilah kuotasi rata-rata quotmoving average, dan deret waktu yang perlu dibedakan untuk dijadikan stasioner disebut versi seri integimental dari seri stasioner. Model random-walk dan random-trend, model autoregresif, dan model pemulusan eksponensial adalah kasus khusus model ARIMA. Model ARIMA nonseasonal diklasifikasikan sebagai model quotARIMA (p, d, q) quot, di mana: p adalah jumlah istilah autoregresif, d adalah jumlah perbedaan nonseasonal yang diperlukan untuk stasioneritas, dan q adalah jumlah kesalahan perkiraan yang tertinggal dalam Persamaan prediksi Persamaan peramalan dibangun sebagai berikut. Pertama, izinkan y menunjukkan perbedaan D dari Y. yang berarti: Perhatikan bahwa perbedaan kedua Y (kasus d2) bukanlah selisih 2 periode yang lalu. Sebaliknya, ini adalah perbedaan pertama-perbedaan-dari-pertama. Yang merupakan analog diskrit turunan kedua, yaitu akselerasi lokal dari seri daripada tren lokalnya. Dalam hal y. Persamaan peramalan umum adalah: Disini parameter rata-rata bergerak (9528217s) didefinisikan sehingga tanda-tanda mereka negatif dalam persamaan, mengikuti konvensi yang diperkenalkan oleh Box dan Jenkins. Beberapa penulis dan perangkat lunak (termasuk bahasa pemrograman R) mendefinisikannya sehingga mereka memiliki tanda plus. Bila nomor aktual dicolokkan ke dalam persamaan, tidak ada ambiguitas, tapi penting untuk mengetahui konvensi mana yang digunakan perangkat lunak Anda saat Anda membaca hasilnya. Seringkali parameter dilambangkan dengan AR (1), AR (2), 8230, dan MA (1), MA (2), 8230 dll. Untuk mengidentifikasi model ARIMA yang sesuai untuk Y. Anda memulai dengan menentukan urutan differencing (D) perlu membuat stasioner seri dan menghilangkan fitur musiman musiman, mungkin bersamaan dengan transformasi yang menstabilkan varians seperti penebangan atau pengapuran. Jika Anda berhenti pada titik ini dan meramalkan bahwa rangkaian yang berbeda adalah konstan, Anda hanya memiliki model acak berjalan atau acak acak. Namun, rangkaian stationarized masih memiliki kesalahan autokorelasi, menunjukkan bahwa beberapa jumlah istilah AR (p 8805 1) dan beberapa istilah MA (q 8805 1) juga diperlukan dalam persamaan peramalan. Proses penentuan nilai p, d, dan q yang terbaik untuk rangkaian waktu tertentu akan dibahas di bagian catatan selanjutnya (yang tautannya berada di bagian atas halaman ini), namun pratinjau beberapa jenis Model ARIMA nonseasonal yang biasa dijumpai diberikan di bawah ini. ARIMA (1,0,0) model autoregresif orde pertama: jika seri stasioner dan autokorelasi, mungkin dapat diprediksi sebagai kelipatan dari nilai sebelumnya, ditambah konstanta. Persamaan peramalan dalam kasus ini adalah 8230 yang Y regresi pada dirinya sendiri tertinggal oleh satu periode. Ini adalah model konstanta 8220ARIMA (1,0,0) constant8221. Jika mean Y adalah nol, maka istilah konstan tidak akan disertakan. Jika koefisien kemiringan 981 1 positif dan kurang dari 1 besarnya (harus kurang dari 1 dalam besaran jika Y adalah stasioner), model tersebut menggambarkan perilaku rata-rata pada nilai periodisasi berikutnya yang diperkirakan akan menjadi 981 1 kali sebagai Jauh dari mean sebagai nilai periode ini. Jika 981 1 negatif, ia memprediksi perilaku rata-rata dengan alternasi tanda, yaitu juga memprediksi bahwa Y akan berada di bawah rata-rata periode berikutnya jika berada di atas rata-rata periode ini. Dalam model autoregresif orde kedua (ARIMA (2,0,0)), akan ada istilah Y t-2 di sebelah kanan juga, dan seterusnya. Bergantung pada tanda dan besaran koefisien, model ARIMA (2,0,0) bisa menggambarkan sistem yang pembalikan rata-rata terjadi dengan mode sinusoidal oscillating, seperti gerak massa pada pegas yang mengalami guncangan acak. . ARIMA (0,1,0) berjalan acak: Jika seri Y tidak stasioner, model yang paling sederhana untuk model ini adalah model jalan acak, yang dapat dianggap sebagai kasus pembatas model AR (1) dimana autoregresif Koefisien sama dengan 1, yaitu deret dengan reversi mean yang jauh lebih lambat. Persamaan prediksi untuk model ini dapat ditulis sebagai: di mana istilah konstan adalah perubahan periode-ke-periode rata-rata (yaitu drift jangka panjang) di Y. Model ini dapat dipasang sebagai model regresi yang tidak mencegat dimana Perbedaan pertama Y adalah variabel dependen. Karena hanya mencakup perbedaan nonseasonal dan istilah konstan, model ini diklasifikasikan sebagai model quotARIMA (0,1,0) dengan konstan. Model random-walk-without -drift akan menjadi ARIMA (0,1, 0) model tanpa ARIMA konstan (1,1,0) model autoregresif orde satu yang terdesentralisasi: Jika kesalahan model jalan acak diobot dengan autokorelasi, mungkin masalahnya dapat diperbaiki dengan menambahkan satu lag variabel dependen ke persamaan prediksi- -yaitu Dengan mengundurkan diri dari perbedaan pertama Y pada dirinya sendiri yang tertinggal satu periode. Ini akan menghasilkan persamaan prediksi berikut: yang dapat diatur ulang menjadi Ini adalah model autoregresif orde pertama dengan satu urutan perbedaan nonseasonal dan istilah konstan - yaitu. Model ARIMA (1,1,0). ARIMA (0,1,1) tanpa perataan eksponensial sederhana: Strategi lain untuk memperbaiki kesalahan autokorelasi dalam model jalan acak disarankan oleh model pemulusan eksponensial sederhana. Ingatlah bahwa untuk beberapa seri waktu nonstasioner (misalnya yang menunjukkan fluktuasi yang bising di sekitar rata-rata yang bervariasi secara perlahan), model jalan acak tidak berjalan sebaik rata-rata pergerakan nilai masa lalu. Dengan kata lain, daripada mengambil pengamatan terbaru sebagai perkiraan pengamatan berikutnya, lebih baik menggunakan rata-rata beberapa pengamatan terakhir untuk menyaring kebisingan dan memperkirakan secara lebih akurat mean lokal. Model pemulusan eksponensial sederhana menggunakan rata-rata pergerakan rata-rata tertimbang eksponensial untuk mencapai efek ini. Persamaan prediksi untuk model smoothing eksponensial sederhana dapat ditulis dalam sejumlah bentuk ekuivalen matematis. Salah satunya adalah bentuk koreksi yang disebut 8220error correction8221, dimana ramalan sebelumnya disesuaikan dengan kesalahan yang dibuatnya: Karena e t-1 Y t-1 - 374 t-1 menurut definisinya, ini dapat ditulis ulang sebagai : Yang merupakan persamaan peramalan ARIMA (0,1,1) - tanpa perkiraan konstan dengan 952 1 1 - 945. Ini berarti bahwa Anda dapat menyesuaikan smoothing eksponensial sederhana dengan menentukannya sebagai model ARIMA (0,1,1) tanpa Konstan, dan perkiraan koefisien MA (1) sesuai dengan 1-minus-alpha dalam formula SES. Ingatlah bahwa dalam model SES, rata-rata usia data dalam prakiraan 1 periode adalah 1 945. yang berarti bahwa mereka cenderung tertinggal dari tren atau titik balik sekitar 1 945 periode. Dengan demikian, rata-rata usia data dalam prakiraan 1-periode-depan model ARIMA (0,1,1) - tanpa konstan adalah 1 (1 - 952 1). Jadi, misalnya, jika 952 1 0,8, usia rata-rata adalah 5. Karena 952 1 mendekati 1, model ARIMA (0,1,1) - tanpa model konstan menjadi rata-rata bergerak jangka-panjang, dan sebagai 952 1 Pendekatan 0 menjadi model random-walk-without-drift. Apa cara terbaik untuk memperbaiki autokorelasi: menambahkan istilah AR atau menambahkan istilah MA Dalam dua model sebelumnya yang dibahas di atas, masalah kesalahan autokorelasi dalam model jalan acak diperbaiki dengan dua cara yang berbeda: dengan menambahkan nilai lag dari seri yang berbeda Ke persamaan atau menambahkan nilai tertinggal dari kesalahan perkiraan. Pendekatan mana yang terbaik Aturan praktis untuk situasi ini, yang akan dibahas lebih rinci nanti, adalah bahwa autokorelasi positif biasanya paling baik ditangani dengan menambahkan istilah AR ke model dan autokorelasi negatif biasanya paling baik ditangani dengan menambahkan MA istilah. Dalam deret waktu bisnis dan ekonomi, autokorelasi negatif sering muncul sebagai artefak differencing. (Secara umum, differencing mengurangi autokorelasi positif dan bahkan dapat menyebabkan perubahan dari autokorelasi positif ke negatif.) Jadi, model ARIMA (0,1,1), di mana perbedaannya disertai dengan istilah MA, lebih sering digunakan daripada Model ARIMA (1,1,0). ARIMA (0,1,1) dengan perataan eksponensial sederhana konstan dengan pertumbuhan: Dengan menerapkan model SES sebagai model ARIMA, Anda benar-benar mendapatkan fleksibilitas. Pertama, perkiraan koefisien MA (1) dibiarkan negatif. Ini sesuai dengan faktor pemulusan yang lebih besar dari 1 dalam model SES, yang biasanya tidak diizinkan oleh prosedur pemasangan model SES. Kedua, Anda memiliki pilihan untuk memasukkan istilah konstan dalam model ARIMA jika Anda mau, untuk memperkirakan tren nol rata-rata. Model ARIMA (0,1,1) dengan konstanta memiliki persamaan prediksi: Prakiraan satu periode dari model ini secara kualitatif serupa dengan model SES, kecuali bahwa lintasan perkiraan jangka panjang biasanya adalah Garis miring (kemiringannya sama dengan mu) bukan garis horizontal. ARIMA (0,2,1) atau (0,2,2) tanpa pemulusan eksponensial linier konstan: Model pemulusan eksponensial linier adalah model ARIMA yang menggunakan dua perbedaan nonseason dalam hubungannya dengan persyaratan MA. Perbedaan kedua dari seri Y bukan hanya perbedaan antara Y dan dirinya tertinggal dua periode, namun ini adalah perbedaan pertama dari perbedaan pertama - i. Perubahan perubahan Y pada periode t. Jadi, perbedaan kedua Y pada periode t sama dengan (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Perbedaan kedua dari fungsi diskrit sama dengan turunan kedua dari fungsi kontinyu: ia mengukur kuotasi kuadrat atau quotcurvaturequot dalam fungsi pada suatu titik waktu tertentu. Model ARIMA (0,2,2) tanpa konstan memprediksi bahwa perbedaan kedua dari rangkaian sama dengan fungsi linier dari dua kesalahan perkiraan terakhir: yang dapat disusun ulang sebagai: di mana 952 1 dan 952 2 adalah MA (1) dan MA (2) koefisien. Ini adalah model pemulusan eksponensial linear umum. Dasarnya sama dengan model Holt8217s, dan model Brown8217s adalah kasus khusus. Ini menggunakan rata-rata pergerakan tertimbang eksponensial untuk memperkirakan tingkat lokal dan tren lokal dalam rangkaian. Perkiraan jangka panjang dari model ini menyatu dengan garis lurus yang kemiringannya bergantung pada tren rata-rata yang diamati menjelang akhir rangkaian. ARIMA (1,1,2) tanpa perataan eksponensial eksponensial yang terfragmentasi. Model ini diilustrasikan pada slide yang menyertainya pada model ARIMA. Ini mengekstrapolasikan tren lokal di akhir seri namun meratakannya pada cakrawala perkiraan yang lebih panjang untuk memperkenalkan catatan konservatisme, sebuah praktik yang memiliki dukungan empiris. Lihat artikel di quotWhy the Damped Trend karyaquot oleh Gardner dan McKenzie dan artikel quotGolden Rulequot oleh Armstrong dkk. Untuk rinciannya. Umumnya disarankan untuk tetap berpegang pada model di mana setidaknya satu dari p dan q tidak lebih besar dari 1, yaitu jangan mencoba menyesuaikan model seperti ARIMA (2,1,2), karena hal ini cenderung menyebabkan overfitting. Dan isu-isu kuotom-faktorquot yang dibahas secara lebih rinci dalam catatan tentang struktur matematis model ARIMA. Implementasi Spreadsheet: Model ARIMA seperti yang dijelaskan di atas mudah diterapkan pada spreadsheet. Persamaan prediksi adalah persamaan linier yang mengacu pada nilai-nilai masa lalu dari rangkaian waktu asli dan nilai kesalahan masa lalu. Dengan demikian, Anda dapat membuat spreadsheet peramalan ARIMA dengan menyimpan data di kolom A, rumus peramalan pada kolom B, dan kesalahan (data minus prakiraan) di kolom C. Rumus peramalan pada sel biasa di kolom B hanya akan menjadi Sebuah ekspresi linier yang mengacu pada nilai-nilai pada baris-kolom sebelumnya dari kolom A dan C, dikalikan dengan koefisien AR atau MA yang sesuai yang disimpan di sel-sel di tempat lain pada proses kesalahan rata-rata spreadsheet. Prosesor rata-rata bergerak (kesalahan ARMA) dan model lain yang melibatkan kelambanan kesalahan Dapat diestimasi dengan menggunakan pernyataan FIT dan simulasi atau perkiraan dengan menggunakan pernyataan SOLVE. Model ARMA untuk proses kesalahan sering digunakan untuk model dengan residu autokorelasi. AR macro dapat digunakan untuk menentukan model dengan proses error autoregressive. Makro MA dapat digunakan untuk menentukan model dengan proses error rata-rata bergerak. Kesalahan Autoregressive Model dengan kesalahan autoregresif orde pertama, AR (1), memiliki bentuk sementara proses kesalahan AR (2) memiliki bentuk dan sebagainya untuk proses orde tinggi. Perhatikan bahwa s independen dan terdistribusi secara identik dan memiliki nilai yang diharapkan dari 0. Contoh model dengan komponen AR (2) dan sebagainya untuk proses orde tinggi. Sebagai contoh, Anda dapat menulis model regresi linier sederhana dengan MA (2) kesalahan rata-rata bergerak dimana MA1 dan MA2 adalah parameter rata-rata bergerak. Perhatikan bahwa RESID.Y didefinisikan secara otomatis oleh MODEL PROC karena fungsi ZLAG harus digunakan untuk model MA untuk memotong rekursi lag. Hal ini memastikan bahwa kesalahan yang tertinggal mulai dari nol pada fase lag-priming dan tidak menyebarkan nilai yang hilang saat variabel periode lag-priming hilang, dan ini memastikan bahwa kesalahan masa depan nol daripada hilang selama simulasi atau peramalan. Untuk rincian tentang fungsi lag, lihat bagian Lag Logic. Model yang ditulis menggunakan makro MA adalah sebagai berikut: Formulir Umum untuk Model ARMA Proses ARMA umum (p, q) memiliki bentuk berikut Model ARMA (p, q) dapat ditentukan sebagai berikut: di mana AR i dan MA j mewakili Parameter autoregresif dan moving-average untuk berbagai kelambatan. Anda dapat menggunakan nama yang Anda inginkan untuk variabel-variabel ini, dan ada banyak cara setara yang bisa ditulis spesifikasi. Proses ARMA vektor juga dapat diestimasi dengan MODEL PROC. Sebagai contoh, dua variabel AR (1) proses untuk kesalahan dari dua variabel endogen Y1 dan Y2 dapat ditentukan sebagai berikut: Masalah Konvergensi dengan Model ARMA Model ARMA dapat diperkirakan sulit. Jika perkiraan parameter tidak berada dalam kisaran yang sesuai, model rata-rata bergerak rata-rata tumbuh secara eksponensial. Residu yang dihitung untuk pengamatan selanjutnya bisa sangat besar atau bisa meluap. Hal ini bisa terjadi baik karena nilai awal yang salah digunakan atau karena iterasi menjauh dari nilai yang masuk akal. Perawatan harus digunakan untuk memilih nilai awal untuk parameter ARMA. Nilai awal 0,001 untuk parameter ARMA biasanya bekerja jika model sesuai dengan data dengan baik dan masalahnya ber-AC. Perhatikan bahwa model MA sering didekati dengan model AR orde tinggi, dan sebaliknya. Hal ini dapat mengakibatkan collinearity yang tinggi pada model ARMA campuran, yang pada gilirannya dapat menyebabkan gangguan serius pada perhitungan dan ketidakstabilan estimasi parameter. Jika Anda memiliki masalah konvergensi sambil memperkirakan model dengan proses kesalahan ARMA, cobalah untuk memperkirakan secara bertahap. Pertama, gunakan pernyataan FIT untuk memperkirakan hanya parameter struktural dengan parameter ARMA yang dimiliki hingga nol (atau perkiraan perkiraan sebelumnya jika tersedia). Selanjutnya, gunakan pernyataan FIT lain untuk memperkirakan parameter ARMA saja, dengan menggunakan nilai parameter struktural dari putaran pertama. Karena nilai parameter struktural cenderung mendekati perkiraan akhir, perkiraan parameter ARMA sekarang mungkin akan terpenuhi. Akhirnya, gunakan pernyataan FIT lain untuk menghasilkan perkiraan simultan semua parameter. Karena nilai awal parameter sekarang mungkin mendekati perkiraan akhir bersama mereka, taksiran harus disimpulkan dengan cepat jika modelnya sesuai untuk data. AR Kondisi Awal Kelambatan awal dari hal-hal kesalahan model AR (p) dapat dimodelkan dengan berbagai cara. Metode startup error autoregressive yang didukung oleh prosedur SASETS adalah sebagai berikut: conditional least squares (prosedur ARIMA dan MODEL) prosedur kuadrat tanpa syarat (prosedur AUTOREG, ARIMA, dan MODEL) Kemungkinan maksimum (prosedur AUTOREG, ARIMA, dan MODEL) Yule-Walker (AUTOREG Prosedur saja) Hildreth-Lu, yang menghapus pengamatan p pertama (hanya prosedur MODEL) Lihat Bab 8, Prosedur AUTOREG, untuk penjelasan dan pembahasan tentang manfaat dari berbagai metode startup AR (p). Inisialisasi CLS, ULS, ML, dan HL dapat dilakukan oleh PROC MODEL. Untuk kesalahan AR (1), inisialisasi ini dapat diproduksi seperti ditunjukkan pada Tabel 18.2. Metode ini setara dengan sampel besar. Tabel 18.2 Inisialisasi yang Dilakukan oleh MODEL PROC: AR (1) KESALAHAN Keterlambatan awal dari istilah kesalahan model MA (q) juga dapat dimodelkan dengan berbagai cara. Paradigma start-up kesalahan rata-rata bergerak berikut didukung oleh prosedur ARIMA dan MODEL: kuadrat tanpa syarat minimal bersyarat kuadrat bersyarat Metode kuadrat terkecil bersyarat untuk memperkirakan rata-rata kesalahan rata-rata bergerak tidak optimal karena mengabaikan masalah start-up. Hal ini mengurangi efisiensi perkiraan, meskipun tetap tidak bias. Residu tertinggal awal, berlanjut sebelum dimulainya data, diasumsikan 0, nilai harapan tak bersyarat. Ini memperkenalkan perbedaan antara residu ini dan residu kuadrat generalized yang umum untuk kovarian bergerak-rata-rata, yang, tidak seperti model autoregresif, bertahan melalui kumpulan data. Biasanya perbedaan ini menyatu dengan cepat ke 0, namun untuk proses moving-average yang hampir tidak dapat diputar, konvergensinya cukup lambat. Untuk meminimalkan masalah ini, Anda harus memiliki banyak data, dan estimasi parameter rata-rata bergerak harus berada dalam kisaran yang dapat dibalik. Masalah ini bisa diperbaiki dengan mengorbankan penulisan program yang lebih kompleks. Perkiraan kuadrat terkecil tanpa syarat untuk proses MA (1) dapat diproduksi dengan menentukan model sebagai berikut: Kesalahan rata-rata bergerak bisa sulit diperkirakan. Anda harus mempertimbangkan menggunakan pendekatan AR (p) pada proses rata-rata bergerak. Proses rata-rata bergerak biasanya dapat didekati dengan baik oleh proses autoregresif jika data belum diratakan atau dibedakan. AR Macro SAS macro AR menghasilkan pernyataan pemrograman untuk PROC MODEL untuk model autoregresif. AR macro adalah bagian dari perangkat lunak SASETS, dan tidak ada pilihan khusus yang perlu diatur untuk menggunakan makro. Proses autoregresif dapat diterapkan pada persamaan persamaan struktural atau rangkaian endogen sendiri. AR macro dapat digunakan untuk jenis autoregression berikut: vektor autoregression vektor yang tidak terbatas membatasi autoregresi vektor Autoregression univariat Untuk memodelkan kesalahan dari persamaan sebagai proses autoregresif, gunakan pernyataan berikut setelah persamaan: Misalnya, anggaplah Y adalah Fungsi linier X1, X2, dan kesalahan AR (2). Anda akan menulis model ini sebagai berikut: Panggilan ke AR harus mengikuti semua persamaan yang prosesnya berlaku. Permintaan makro sebelumnya, AR (y, 2), menghasilkan pernyataan yang ditunjukkan dalam output LIST pada Gambar 18.58. Gambar 18.58 DAFTAR LIST Output untuk model AR (2) Variabel prefixed PRED adalah variabel program sementara yang digunakan sehingga kelambatan residu adalah residu yang benar dan bukan yang didefinisikan ulang oleh persamaan ini. Perhatikan bahwa ini sama dengan pernyataan yang ditulis secara eksplisit dalam bagian General Form for ARMA Models. Anda juga dapat membatasi parameter autoregresif menjadi nol pada kelambatan yang dipilih. Misalnya, jika Anda menginginkan parameter autoregresif pada kelambatan 1, 12, dan 13, Anda dapat menggunakan pernyataan berikut: Pernyataan ini menghasilkan keluaran yang ditunjukkan pada Gambar 18.59. Gambar 18.59 DAFTAR LIST Output untuk Model AR dengan Lags pada 1, 12, dan 13 Daftar Prosedur MODEL Pernyataan Kode Program yang Disusun sebagai Parsed PRED.yab x1 c x2 RESID.y PRED.y - ACTUAL.y ERROR.y PRED. Y - y OLDPRED.y PRED.y yl1 ZLAG1 (y - perdy) yl12 ZLAG12 (y - perdy) yl13 ZLAG13 (y - perdy) RESID.y PRED.y - ACTUAL.y ERROR.y PRED.y - y Ada Variasi pada metode kuadrat bersyarat minimum, tergantung pada apakah pengamatan pada awal rangkaian digunakan untuk menghangatkan proses AR. Secara default, metode kuadrat terkecil AR menggunakan semua pengamatan dan mengasumsikan angka nol untuk kelambatan awal istilah autoregresif. Dengan menggunakan opsi M, Anda dapat meminta AR menggunakan metode kuadrat tanpa syarat (ULS) atau maximum-likelihood (ML). Misalnya, Diskusi tentang metode ini diberikan di bagian AR Initial Conditions. Dengan menggunakan opsi MCLS n, Anda dapat meminta agar n observasi pertama digunakan untuk menghitung perkiraan keterlambatan autoregressive awal. Dalam kasus ini, analisis dimulai dengan pengamatan n 1. Sebagai contoh: Anda dapat menggunakan makro AR untuk menerapkan model autoregresif ke variabel endogen, bukan ke istilah kesalahan, dengan menggunakan opsi TYPEV. Misalnya, jika Anda ingin menambahkan lima lintasan terakhir Y ke persamaan pada contoh sebelumnya, Anda dapat menggunakan AR untuk menghasilkan parameter dan tertinggal dengan menggunakan pernyataan berikut: Pernyataan sebelumnya menghasilkan output yang ditunjukkan pada Gambar 18.60. Gambar 18.60 DAFTAR Opsi Output untuk model AR Y Model ini memprediksi Y sebagai kombinasi linear X1, X2, intercept, dan nilai Y dalam lima periode terakhir. Vector Autoregression Tidak Terikat Untuk memodelkan istilah kesalahan dari satu himpunan persamaan sebagai proses autoregresif vektor, gunakan bentuk makro AR berikut setelah persamaan: Nilai processname adalah nama yang Anda berikan agar AR digunakan dalam membuat nama untuk autoregresif. Parameter. Anda dapat menggunakan makro AR untuk memodelkan beberapa proses AR yang berbeda untuk rangkaian persamaan yang berbeda dengan menggunakan nama proses yang berbeda untuk setiap rangkaian. Nama proses memastikan bahwa nama variabel yang digunakan adalah unik. Gunakan nilai processname singkat untuk proses jika estimasi parameter ditulis ke kumpulan data output. Makro AR mencoba untuk membangun nama parameter kurang dari atau sama dengan delapan karakter, namun ini dibatasi oleh panjang nama proses. Yang digunakan sebagai awalan untuk nama parameter AR. Nilai variablelist adalah daftar variabel endogen untuk persamaan. Sebagai contoh, anggaplah bahwa kesalahan untuk persamaan Y1, Y2, dan Y3 dihasilkan oleh proses autoregresif vektor orde kedua. Anda dapat menggunakan pernyataan berikut: yang menghasilkan berikut untuk Y1 dan kode serupa untuk Y2 dan Y3: Hanya metode kuadrat bersyarat minimum (MCLS atau MCLS n) yang dapat digunakan untuk proses vektor. Anda juga dapat menggunakan bentuk yang sama dengan batasan bahwa matriks koefisien menjadi 0 pada kelambatan yang dipilih. Sebagai contoh, pernyataan berikut menerapkan proses vektor orde ketiga ke persamaan kesalahan dengan semua koefisien pada lag 2 dibatasi sampai 0 dan dengan koefisien pada lags 1 dan 3 tidak dibatasi: Anda dapat memodelkan tiga seri Y1Y3 sebagai proses autoregresif vektor. Dalam variabel bukan pada kesalahan dengan menggunakan opsi TYPEV. Jika Anda ingin memodelkan Y1Y3 sebagai fungsi nilai-nilai masa lalu Y1Y3 dan beberapa variabel atau konstanta eksogen, Anda dapat menggunakan AR untuk menghasilkan pernyataan untuk istilah lag. Tuliskan persamaan untuk setiap variabel untuk bagian model yang tidak sesuai, dan kemudian hubungi AR dengan opsi TYPEV. Misalnya, Bagian nonautoregresif dari model dapat menjadi fungsi dari variabel eksogen, atau dapat mencegat parameter. Jika tidak ada komponen eksogen terhadap model autoregression vektor, termasuk tidak ada penyadapan, maka tetapkan nol ke masing-masing variabel. Harus ada tugas untuk masing-masing variabel sebelum AR dipanggil. Contoh ini memodelkan vektor Y (Y1 Y2 Y3) sebagai fungsi linier hanya nilainya dalam dua periode sebelumnya dan vektor error noise putih. Model memiliki 18 (3 3 3 3) parameter. Sintaks dari AR Makro Ada dua kasus sintaks dari AR macro. Ketika pembatasan pada proses AR vektor tidak diperlukan, sintaks makro AR memiliki bentuk umum yang menentukan awalan AR yang akan digunakan dalam membangun nama variabel yang diperlukan untuk menentukan proses AR. Jika endolist tidak ditentukan, daftar endogen akan diberi nama default. Yang harus menjadi nama persamaan dimana proses kesalahan AR akan diterapkan. Nilai nama tidak boleh melebihi 32 karakter. Adalah urutan proses AR. Menentukan daftar persamaan dimana proses AR diterapkan. Jika lebih dari satu nama diberikan, proses vektor yang tidak terbatas dibuat dengan residu struktural dari semua persamaan yang disertakan sebagai regresor pada masing-masing persamaan. Jika tidak ditentukan, default endolist akan diberi nama. Menentukan daftar kelambatan di mana istilah AR harus ditambahkan. Koefisien dari syarat pada lags yang tidak terdaftar ditetapkan ke 0. Semua lags yang tercantum harus kurang dari atau sama dengan nlag. Dan pasti tidak ada duplikat. Jika tidak ditentukan, laglist default untuk semua lags 1 sampai nlag. Menentukan metode estimasi untuk diimplementasikan. Nilai M yang valid adalah CLS (perkiraan kuadrat terkecil), ULS (taksiran kuadrat terkecil), dan ML (perkiraan kemungkinan maksimum). MCLS adalah default Hanya MCLS yang diperbolehkan bila lebih dari satu persamaan ditentukan. Metode ULS dan ML tidak didukung untuk model AR vektor oleh AR. Menentukan bahwa proses AR harus diterapkan pada variabel endogen sendiri dan bukan pada residu struktural dari persamaan. Autoregression Vector yang Dibatasi Anda dapat mengontrol parameter mana yang termasuk dalam proses, membatasi hingga 0 parameter yang tidak Anda sertakan. Pertama, gunakan AR dengan opsi DEFER untuk mendeklarasikan daftar variabel dan menentukan dimensi proses. Kemudian, gunakan panggilan AR tambahan untuk menghasilkan istilah untuk persamaan yang dipilih dengan variabel terpilih pada kelambatan yang dipilih. Sebagai contoh, Persamaan kesalahan yang dihasilkan adalah sebagai berikut: Model ini menyatakan bahwa kesalahan untuk Y1 bergantung pada kesalahan Y1 dan Y2 (tapi bukan Y3) pada kedua lag 1 dan 2, dan bahwa kesalahan untuk Y2 dan Y3 bergantung pada kesalahan Kesalahan sebelumnya untuk ketiga variabel, tapi hanya pada lag 1. AR Macro Syntax for Restricted Vector AR Salah satu penggunaan AR dapat digunakan untuk menerapkan pembatasan pada proses AR vektor dengan memanggil AR beberapa kali untuk menentukan persyaratan AR yang berbeda dan tertinggal untuk perbedaan. Persamaan. Panggilan pertama memiliki bentuk umum yang menentukan awalan AR yang akan digunakan dalam membangun nama variabel yang diperlukan untuk menentukan proses AR vektor. Menentukan urutan proses AR. Menentukan daftar persamaan dimana proses AR diterapkan. Menentukan bahwa AR bukan untuk menghasilkan proses AR tapi menunggu informasi lebih lanjut yang ditentukan dalam panggilan AR nanti dengan nilai nama yang sama. Panggilan berikutnya memiliki bentuk umum sama seperti pada panggilan pertama. Menentukan daftar persamaan dimana spesifikasi dalam panggilan AR ini harus diterapkan. Hanya nama yang ditentukan dalam nilai endolist dari panggilan pertama untuk nilai nama yang dapat muncul dalam daftar persamaan dalam eqlist. Menentukan daftar persamaan yang residu struktural tertinggal harus dimasukkan sebagai regresor dalam persamaan di eqlist. Hanya nama dalam endolist dari panggilan pertama untuk nilai nama yang bisa muncul di varlist. Jika tidak ditentukan, varlist default ke endolist. Menentukan daftar kelambatan di mana istilah AR harus ditambahkan. Koefisien dari syarat pada lag tidak terdaftar ditetapkan ke 0. Semua lags yang tercantum harus kurang dari atau sama dengan nilai nlag. Dan pasti tidak ada duplikat. Jika tidak ditentukan, default laglist untuk semua lags 1 sampai nlag. MA Makro MA makro SAS menghasilkan pernyataan pemrograman untuk MODEL PROC untuk model rata-rata bergerak. Makalah MA adalah bagian dari perangkat lunak SASETS, dan tidak ada opsi khusus yang diperlukan untuk menggunakan makro. Proses kesalahan rata-rata bergerak dapat diterapkan pada kesalahan persamaan struktural. Sintaks makro MA sama dengan makro AR kecuali tidak ada argumen TYPE. Bila Anda menggunakan kombinasi makro MA dan AR, makro MA harus mengikuti makro AR. Pernyataan SASIML berikut menghasilkan proses kesalahan ARMA (1, (1 3)) dan menyimpannya di kumpulan data MADAT2. Pernyataan PROC MODEL berikut digunakan untuk memperkirakan parameter model ini dengan menggunakan struktur kesalahan likelihood maksimum: Perkiraan parameter yang dihasilkan oleh langkah ini ditunjukkan pada Gambar 18.61. Gambar 18.61 Perkiraan dari Proses ARMA (1, (1 3)) Ada dua kasus sintaks untuk makro MA. Ketika pembatasan pada proses MA vektor tidak diperlukan, sintaks makro MA memiliki bentuk umum yang menentukan awalan untuk digunakan oleh MA dalam membangun nama variabel yang diperlukan untuk menentukan proses MA dan merupakan endolist default. Adalah urutan proses MA. Menentukan persamaan dimana proses MA diterapkan. Jika lebih dari satu nama diberikan, estimasi CLS digunakan untuk proses vektor. Menentukan kelambatan dimana syarat MA ditambahkan. Semua lags yang tercantum harus kurang dari atau sama dengan nlag. Dan pasti tidak ada duplikat. Jika tidak ditentukan, laglist default untuk semua lags 1 sampai nlag. Menentukan metode estimasi untuk diimplementasikan. Nilai M yang valid adalah CLS (perkiraan kuadrat terkecil), ULS (taksiran kuadrat terkecil), dan ML (perkiraan kemungkinan maksimum). MCLS adalah default Hanya MCLS yang diperbolehkan bila lebih dari satu persamaan ditentukan dalam endolist. MA Makro Sintaks untuk Vector Beralih Rata-rata Penggunaan MA alternatif diperbolehkan menerapkan pembatasan pada proses MA vektor dengan menghubungi MA beberapa kali untuk menentukan persyaratan MA dan lag yang berbeda untuk persamaan yang berbeda. Panggilan pertama memiliki bentuk umum yang menentukan awalan untuk digunakan oleh MA dalam membangun nama variabel yang diperlukan untuk menentukan proses MA vektor. Menentukan urutan proses MA. Menentukan daftar persamaan dimana proses MA akan diterapkan. Menentukan bahwa MA bukan untuk menghasilkan proses MA tapi menunggu informasi lebih lanjut yang ditentukan di MA kemudian memanggil dengan nilai nama yang sama. Panggilan berikutnya memiliki bentuk umum sama seperti pada panggilan pertama. Menentukan daftar persamaan dimana spesifikasi dalam panggilan MA ini harus diterapkan. Menentukan daftar persamaan yang residu struktural tertinggal harus dimasukkan sebagai regresor dalam persamaan di eqlist. Menentukan daftar kelambanan dimana syarat MA ditambahkan.
Binary-options-us-customers
Serikat forex pro